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Abstract. The multiplier groups and factor systems of the 73 symmorphic space groups have 
beenderived and the results are tabulated. It is possible that the results may be of significance 
in the analysis of the problem of the energy level degeneracy occurring when a crystal is 
subjected to a uniform external magnetic field, which has so far been the only area of applica- 
tion of similar results for the translation subgroups. 

1. Introduction 

Brown (1964) has used projective representations of the three-dimensional translation 
groups to discuss the energy level degeneracy occurring when a crystal is subjected to a 
uniform external magnetic field. For particular directions of the magnetic field a 
higher symmetry may be present than that of the translation groups, and in such cases 
we are led to consider the projective representations of crystallographic space groups. 

It is not known whether Brown’s analysis, though undoubtedly correct from a 
strictly mathematical point of view, can, in fact, act as an explanation of any physical 
phenomena. There are certain curious features of the analysis, for example the require- 
ment that. for an infinite crystal, the magnetic field should have certain absolutely 
precise magnitudes in order that finite rather than infinite energy level degeneracies 
should occur. Indeed, assuming there is no volume distortion of the crystal due to the 
applied magnetic field, it appears that finite degeneracies occur as the field is increased 
in magnitude continuously, only for a countable number of field strengths ! 

The author does not pretend to be able to judge whether these irregularities in the 
degeneracy with varying field strength should lead to observable physical phenomena. 
If not, perhaps it is simply that the concept of a uniform magnetic field in a crystal is 
ridiculous, or perhaps some distortion of the crystal does occur, or perhaps the field 
strengths required for observable effects are larger than can be steadily maintained in 
laboratory circumstances. 

One thing is certain however, and that is there is no a priori reason for a quantum- 
mechanical system to have its spectrum analysed in terms of the irreducible vector 
representations of its Schrodinger group rather than in terms of its irreducible projectiue 
representations. The projective representations of almost all groups of interest to the 
mathematical physicist are already known, and if an apology is required for presenting 
this paper and the tables it contains, it is the filling in of a gap that I would select, rather 
than the physical problem discussed above. 
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The first step in the determination of the projective representations of any group is to 
find the multiplier group and the factor systems of that group. For those unfamiliar 
with such notions we refer to Backhouse (1970,1971), for although concepts on projective 
representations have been dealt with by a variety of authors for over half a century, it was 
Backhouse (1970) who first dealt explicitly with the theory of the factor systems and 
multiplier groups of symmorphic space groups. Backhouse (197 1) deals with an example, 
Fq3m, the space group of the zinc-blende structure. 

In the present paper I tabulate, as succinctly as possible, the factor systems and 
multiplier groups of all 73 symmorphic space groups. 

2. Notation and theory 

In performing a tabulation it is necessary to settle on some standard reference work on 
crystallographic space groups, and adopt its conventions and notation. Out of the 
reference books available, I have chosen Bradley and Cracknell(1972), and throughout 
this paper I adopt its notation for both point group and space group operators. and 
also for the orientation of the fundamental translations of the 14 Bravais lattices, as given 
in table 3.1 of that book. 

The advantage of this is that, given a point group operator R,one can then read off the 
matrix R, representing the action of R on the fundamental translations ofa given Bravais 
lattice, from table 3.2 of Bradley and Cracknell(l972) ; and also the matrix R (the inverse 
transpose of R), representing the natural action of R on the fundamental reciprocal lattice 
vectors of the reciprocal Bravais lattice, from table 3.4 of that book. 

For example, for the operator C,, in the Bravais lattice rl, 
- 0 1  -1 0 0 

CZa= -A ; ] and cZu=[ 7 -; 4. (1) 

As will be seen shortly, not to have to tabulate the matrices for all operators relevant to 
each of the 14 Bravais lattices saves an immense amount of space. 

As shown by Backhouse (1970), the multiplier group, H z ( T 3 ;  T ) ,  of any three- 
dimensional translation group T3 is T @ T @ T (the direct product of three copies of 
the multiplicative group of complex numbers of unit modulus) and the corresponding 
factor systems are 

y ( t ,  s) = exp( - 2zitTAs), (2) 
where 

0 a3 -a,  

A =  - a 3  0 [ a, -a l  
(3) 

and a, ,  U,, a3 E [0, )). In equation (2), s is a column vector with integer entries s, , s,, s3 
and represents the translation {EIs l t ,  + s , t ,  + s 3 t 3 } ,  where f , ,  t , ,  t3 are the fundamental 
translations of the Bravais lattice in question. The superscript T, as always in this paper, 
denotes the transpose ofa matrix. As A is an antisymmetric 3-tensor, a factor system of T3 
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can be thought of as being categorized by the pseudovector 

= [;j, (4) 

and in the course of tabulating the factor systems of the symmorphic space groups we 
shall designate their restriction to the translational subgroups by specifying those 
pseudovectors that are allowed. 

Suppose now that we have a symmorphic space group G = P O T , ,  where P is the 
isogonal point group of the space group, and T3 is the translational subgroup. Elements 
of G are given by symbols of the form (Rl t } ,  where R E P and r is a translation of T3. 
Backhouse (1970) shows that a typical factor system of G can be written in the form 

where the asterisk denotes complex conjugation. In equation (5 ) ,  cri(R,, R , )  is a factor 
system of P. In determining a complete set of non-equivalent factor systems of G all 
factor systems ai of P are allowed. Fortunately, the multiplier groups, H 2 ( P ;  T) ,  and 
factor systems of the crystallographic point groups P have already been tabulated by 
Hurley (1966), and need not therefore be retabulated in this paper. y j ( r , ,  R , t , )  is a 
factor system of T3 (see equations (2) and (3)). As explained by Backhouse (1970), in 
determining a complete set of non-equivalent factor systems of G only certain factor 
systems y j  of T3 that are compatible with the point group P are allowed. In making our 
tabulation we shall specify the corresponding allowed pseudovectors a i .  Finally, in 
equation ( 5 ) ,  

(6) 
In equation (6), k,(R) is a solution of the homogeneous congruences, that for all R , ,  

d?J)(R, r )  = A(yJ)(R, t )  exp(2nik, ( R )  . t) .  

R2 E P, 

k(R ,R , )  k(R,)+k,k(R,)(mod K ) ,  (7) 
K being any reciprocal lattice vector. In determining a complete set of non-equivalent 
factor systems of G all solutions of equation (7) are permitted modulo the principal 
solutions, that are of the form k(R)  = Rk - k for any k in the first Brillouin zone of the 
reciprocal lattice. 

In equation (6), 

A(?J)(R, t )  = exp( - nit’v’r) exp(2nihAR) . t ) ,  (8) 
where the symmetric matrix qR) is given by 

fi;) = R . A ~ R - ~ - A ~ + N ~ ) ,  (9) 
A j  being the antisymmetric tensor corresponding to y j ,  and N y )  being an integer matrix 
chosen so that the entries in B’p) are either zero or one half; and where h j R )  is any 
solution of the inhomogeneous congruences, that for all R I ,  R ,  E P, 

hAR1R2) -h ,~R1) -k1Aj (R2)  k (yJ ) (R1 ,  R,)(mod K) .  (10) 

klYJ’(R 1 , R2) = - ( S  1 pS2iby) + S2iS-3 ib‘,“ + S3 iS 1 iby)), 

From the work of Backhouse (1970), it is easily shown that 

(11) 
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where S = R ;  ', and 

In deriving equation (11) the reader must appreciate that the matrices qR) are not only 
symmetric, but have all their diagonal entries equal to zero. In the majority of cases 
k(Yj)(R1, R 2 )  turns out to be the zero vector for all R I ,  R ,  E P ,  in which case LJR) = 0 for 
all R E P .  In certain cases equations (IO) have no solution, in which case y j  is not an 
allowed factor system. In fact, only those factor systems y j  of T3 are allowed for which 
(det R ) -  'Raj  E ai (mod i) for all R E P ,  and for which equations (IO) have a solution. 

If in equation ( 5 )  we allow i , j ,  1 to take on all allowed values, as just explained in the 
text, we get a complete set of non-equivalent factor systems of G. From the solutions 
obtained it turns out that the multiplier group H 2 ( G  ; T) ,  ofany symmorphic space group 
G is given by 

(1 3) 

where the symbol E means 'isomorphic to', H 2 ( P ;  T )  is the multiplier group of P ,  
H;(T3; T)isthesubgroupofthemultiplier group of T3 ofallowed y,,andH'(P; (T3/T;)*) 
is the standard notation for the one-dimensional cohomology group of solutions of the 
homogeneous congruences (7), modulo the principal solutions. 

Because we are using standard reference works, Bradley and Cracknell (1972) and 
Hurley (1966), the following symbols need not be tabulated, as the reader has sufficient 
information to compute them for himself: (i) matrices R etc, for all R E P ,  (ii) matrices 
B',R) for all allowed y j ,  and for all R E P ,  (iii) vectors k(y j ) (R1 ,  R, )  for all allowed y j .  and 
for all R ,  , R2 E P .  Tables of results need therefore include only the following information. 
For the multiplier groups, the two last groups appearing on the right hand side of the 
decomposition (13); and for the factor systems, (i) the allowed pseudovectors aj corres- 
ponding to the allowed group of y j  comprising the group H;(T3 ; T) ,  (ii) the solution Lj(R) 
for each allowed y j ,  and (iii) the solutions k, (R)  of the homogeneous congruences (7). 
As regards (ii) and (iii), it is clear from the work of Backhouse (1970) that hj(R) and k,(R) 
need not be given for all R E P ;  it is sufficient to specify them for a set of generators 
R , ,  R , ,  . . . , R,, of P .  Furthermore, if the group H 1 ( P ;  (T,/Tj)*) is given as a direct 
product of cyclic groups (C,', 0 Ci2 0 . .  . 0 Cit) then it is not necessary to list all 
n l n 2 . .  . n, vectors k,, but merely the t vectors k ,  ,k2,. . . , k, that generate the cyclic 
groups Ci,, C;,, . . . , Cit, respectively. All other allowed k ,  can be determined from 
them as linear combinations of them by componentwise addition modulo unity. 

H 2 ( G ;  T )  z H 2 ( P ;  T )  0 H'(P;(T,/T;)*) 0 H;(T,: T ) ,  

3. The results 

Table 1. The multiplier groups 

International 
symbol of 
space group H ' ( P ;  (T3/T;)*) 

P1 
PT 
P2 

c: 
ct 
c: 
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Table l .-continued 
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International 
symbol of 
space group H V ;  (T3/T;)*) 

8 2  
P m  
Bm 
P2Jm 
B 2 / m  
P222 
c 2 2 2  
F222 
1222 
Pmm2 
Cmm2 
Amm2 
Fmm2 
lmm2 
Pmmm 
Cmmm 
Fmmm 
Immm 
P4 
14 
PZ 
IZ 
P4 J m  
14/m 
P422 
1422 
P4mm 
14" 
PZ2m 
Pam2 
1Zm2 
132m 
P4/mmm 
I4/mmm 
P3 
R3 
P 3  
R3 
P312 
P321 
R32 
P3ml 
P31m 
R 3 m  
P 3 l m  
P3ml  
RSm 
P 6  
Pi; 
P 6 / m  
P622 
P6mm 

c: 8 c: 
C: 
C: 0 C: 8 C: 
c: 
c: 8 c: 8 c: 
c: 
c: 
Ct 
c: 8 c: 8 c: 8 c: 
c: 8 c: 
c: 8 c: 
cf 63 c: 
C: 
c: 8 c: 8 c: 8 c: 8 c: 8 c; 
c: 8 c: 8 c: 
c: 8 c: 8 c: 
c: 
c: 
c: 
ci 
ct 
c: 8 c: 
c: 
c: 8 c: 
c: 
c: 8 c: 8 c: 
c: @I c: 
c: 8 c: 
ci 8 c: 
C: 
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Table l.--continued 

International 
symbol of 
space group H Y P ;  (T,/T\)*) 

Pam2 
P62m 
P6/mmm 
P23 
F23 
123 
Pm3 
Fm3 
Im3 
P432 
F432 
1432 
PS3m 
F?3m 
143m 
Pm3m 
Fm3m 
Im3m 

c2 

C2 
c2 

c2 

c4 

CI 
cz 
C2 
CI 

(i) C, (with or without superscript) denotes the cyclic group of order t .  
(ii) Tis the multiplicative group of complex numbers of unit modulus. 
(5) To obtain the multiplier group of a particular space group use ( 1 3 )  with H 2 ( P ;  T) taken 
from Hurley (1966).  Thus, for example, the multiplier group of P432 is C, @ C ,  C, , 

Table 2. The factor systems 

P1 
P i  

P2  

B2 

P m  

Bm 

P 2 / m  

B2/m 

P222 

c 2 2 2  

F222 
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Table Z.-continued 
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1222 

Pmm2 

Cmm2 

Amm2 

Fmm2 

Imm2 

Pmmm 

Cmmm 

Fmmm 

Immm 

P4 

14 

P4 

IS 

P4/m 

14/m 

P422 

1422 

P4mm 

14" 

PS2m 

PSm2 
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Table Z.-ontinued 

1?m2 

1?2m 

P4/mmm 

I4/mmm 

P3 

R3 

P3  

RJ 

P312 

P321 

R32 

P3ml 

P31m 

R3m 

PJ1m 

PJml 

R3m 

P6 

P6 

P6/m 

P622 

P6mm 
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Table 2.-continued 
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P6m2 

P62m 

P6Jmmm 

P23 

F23 

123 

Pm3 

Fm3 

Im3 

P432 

F432 

1432 

PJ3m 

F33m 

133m 

Pm3m 

Fm3m 

lm3m 

(i) Vectors, although written as row vectors for the sake of brevity, are to be understood as 
column vectors. 
(ii) L j R )  = 0 for all R E P, except where tabulated to the contrary. 
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Table 2.-continued 

(iii) In cross reference with table 1, the allowed pseudovectors define the subgroup H:(T, ; T ) ,  
as given in column 3 of table 1. 
(iv) In cross reference with table 1, the vectors k,(R) (tabulated above for a set of generators R 
of P )  generate the cyclic groups C:, as given in column 2 of table 1. 
(v) In tabulating the vectors LAR), the freedom of choice one has in their selection (see the 
text prior to equation (10)) can and has been used to ensure the isomorphism expressed by 
equation (13). In this respect it turns out that particular care has to be exercised for the 
groups F222 and F23 only. 

Acknowledgments 

The author is indebted to Dr N B Backhouse for some helpful correspondence, and to 
Miss M E Bickerstaff for checking the calculations. The author is also grateful to a 
referee for pointing out an error in the first draft of the manuscript. 

References 

Backhouse N B 1970 Q. J .  Math. 21 271-95 

Bradley C J and Cracknell A P 1972 The Mathematical Theory of Symmetry in Solids (Oxford: Clarendon) 
Brown E 1964 Phys. Rev. 133 A 1 0 3 8 4  
Hurley A C 1966 Phil. Trans. R.  Soc. A 260 1-36 

- 1971 Q. J .  Math. 22 277-90 


